Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2.

Identifieur interne : 000797 ( 2020/Analysis ); précédent : 000796; suivant : 000798

Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2.

Auteurs : Rachele Cagliani [Italie] ; Diego Forni [Italie] ; Mario Clerici [Italie] ; Manuela Sironi [Italie]

Source :

RBID : pubmed:32238584

Abstract

The novel coronavirus (SARS-CoV-2) recently emerged in China is thought to have a bat origin, as its closest known relative (BatCoV RaTG13) was described in horseshoe bats. We analyzed the selective events that accompanied the divergence of SARS-CoV-2 from BatCoV RaTG13. To this aim, we applied a population genetics-phylogenetics approach, which leverages within-population variation and divergence from an outgroup. Results indicated that most sites in the viral ORFs evolved under strong to moderate purifying selection. The most constrained sequences corresponded to some non-structural proteins (nsps) and to the M protein. Conversely, nsp1 and accessory ORFs, particularly ORF8, had a non-negligible proportion of codons evolving under very weak purifying selection or close to selective neutrality. Overall, limited evidence of positive selection was detected. The 6 bona fide positively selected sites were located in the N protein, in ORF8, and in nsp1. A signal of positive selection was also detected in the receptor-binding motif (RBM) of the spike protein but most likely resulted from a recombination event that involved the BatCoV RaTG13 sequence. In line with previous data, we suggest that the common ancestor of SARS-CoV-2 and BatCoV RaTG13 encoded/encodes an RBM similar to that observed in SARS-CoV-2 itself and in some pangolin viruses. It is presently unknown whether the common ancestor still exists and which animals it infects. Our data however indicate that divergence of SARS-CoV-2 from BatCoV RaTG13 was accompanied by limited episodes of positive selection, suggesting that the common ancestor of the two viruses was poised for human infection.IMPORTANCE Coronaviruses are dangerous zoonotic pathogens: in the last two decades three coronaviruses have crossed the species barrier and caused human epidemics. One of these is the recently emerged SARS-CoV-2. We investigated how, since its divergence from a closely related bat virus, natural selection shaped the genome of SARS-CoV-2. We found that distinct coding regions in the SARS-CoV-2 genome evolve under different degrees of constraint and are consequently more or less prone to tolerate amino acid substitutions. In practical terms, the level of constraint provides indications about which proteins/protein regions are better suited as possible targets for the development of antivirals or vaccines. We also detected limited signals of positive selection in three viral ORFs. However, we warn that, in the absence of knowledge about the chain of events that determined the human spill-over, these signals should not be necessarily interpreted as evidence of an adaptation to our species.

DOI: 10.1128/JVI.00411-20
PubMed: 32238584


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32238584

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2.</title>
<author>
<name sortKey="Cagliani, Rachele" sort="Cagliani, Rachele" uniqKey="Cagliani R" first="Rachele" last="Cagliani">Rachele Cagliani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy rachele.cagliani@lanostrafamiglia.it.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini</wicri:regionArea>
<wicri:noRegion>Bosisio Parini</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Forni, Diego" sort="Forni, Diego" uniqKey="Forni D" first="Diego" last="Forni">Diego Forni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini</wicri:regionArea>
<wicri:noRegion>Bosisio Parini</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clerici, Mario" sort="Clerici, Mario" uniqKey="Clerici M" first="Mario" last="Clerici">Mario Clerici</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physiopathology and Transplantation, University of Milan, Milan</wicri:regionArea>
<placeName>
<settlement type="city">Milan</settlement>
<region nuts="2">Lombardie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sironi, Manuela" sort="Sironi, Manuela" uniqKey="Sironi M" first="Manuela" last="Sironi">Manuela Sironi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini</wicri:regionArea>
<wicri:noRegion>Bosisio Parini</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32238584</idno>
<idno type="pmid">32238584</idno>
<idno type="doi">10.1128/JVI.00411-20</idno>
<idno type="wicri:Area/PubMed/Corpus">000401</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000401</idno>
<idno type="wicri:Area/PubMed/Curation">000401</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000401</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000631</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000631</idno>
<idno type="wicri:Area/Ncbi/Merge">003694</idno>
<idno type="wicri:Area/Ncbi/Curation">003694</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">003694</idno>
<idno type="wicri:Area/Main/Merge">000797</idno>
<idno type="wicri:Area/Main/Curation">000797</idno>
<idno type="wicri:Area/Main/Exploration">000797</idno>
<idno type="wicri:Area/2020/Extraction">000797</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2.</title>
<author>
<name sortKey="Cagliani, Rachele" sort="Cagliani, Rachele" uniqKey="Cagliani R" first="Rachele" last="Cagliani">Rachele Cagliani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy rachele.cagliani@lanostrafamiglia.it.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini</wicri:regionArea>
<wicri:noRegion>Bosisio Parini</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Forni, Diego" sort="Forni, Diego" uniqKey="Forni D" first="Diego" last="Forni">Diego Forni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini</wicri:regionArea>
<wicri:noRegion>Bosisio Parini</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clerici, Mario" sort="Clerici, Mario" uniqKey="Clerici M" first="Mario" last="Clerici">Mario Clerici</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physiopathology and Transplantation, University of Milan, Milan</wicri:regionArea>
<placeName>
<settlement type="city">Milan</settlement>
<region nuts="2">Lombardie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sironi, Manuela" sort="Sironi, Manuela" uniqKey="Sironi M" first="Manuela" last="Sironi">Manuela Sironi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini</wicri:regionArea>
<wicri:noRegion>Bosisio Parini</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The novel coronavirus (SARS-CoV-2) recently emerged in China is thought to have a bat origin, as its closest known relative (BatCoV RaTG13) was described in horseshoe bats. We analyzed the selective events that accompanied the divergence of SARS-CoV-2 from BatCoV RaTG13. To this aim, we applied a population genetics-phylogenetics approach, which leverages within-population variation and divergence from an outgroup. Results indicated that most sites in the viral ORFs evolved under strong to moderate purifying selection. The most constrained sequences corresponded to some non-structural proteins (nsps) and to the M protein. Conversely, nsp1 and accessory ORFs, particularly ORF8, had a non-negligible proportion of codons evolving under very weak purifying selection or close to selective neutrality. Overall, limited evidence of positive selection was detected. The 6
<i>bona fide</i>
positively selected sites were located in the N protein, in ORF8, and in nsp1. A signal of positive selection was also detected in the receptor-binding motif (RBM) of the spike protein but most likely resulted from a recombination event that involved the BatCoV RaTG13 sequence. In line with previous data, we suggest that the common ancestor of SARS-CoV-2 and BatCoV RaTG13 encoded/encodes an RBM similar to that observed in SARS-CoV-2 itself and in some pangolin viruses. It is presently unknown whether the common ancestor still exists and which animals it infects. Our data however indicate that divergence of SARS-CoV-2 from BatCoV RaTG13 was accompanied by limited episodes of positive selection, suggesting that the common ancestor of the two viruses was poised for human infection.
<b>IMPORTANCE</b>
Coronaviruses are dangerous zoonotic pathogens: in the last two decades three coronaviruses have crossed the species barrier and caused human epidemics. One of these is the recently emerged SARS-CoV-2. We investigated how, since its divergence from a closely related bat virus, natural selection shaped the genome of SARS-CoV-2. We found that distinct coding regions in the SARS-CoV-2 genome evolve under different degrees of constraint and are consequently more or less prone to tolerate amino acid substitutions. In practical terms, the level of constraint provides indications about which proteins/protein regions are better suited as possible targets for the development of antivirals or vaccines. We also detected limited signals of positive selection in three viral ORFs. However, we warn that, in the absence of knowledge about the chain of events that determined the human spill-over, these signals should not be necessarily interpreted as evidence of an adaptation to our species.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Lombardie</li>
</region>
<settlement>
<li>Milan</li>
</settlement>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Cagliani, Rachele" sort="Cagliani, Rachele" uniqKey="Cagliani R" first="Rachele" last="Cagliani">Rachele Cagliani</name>
</noRegion>
<name sortKey="Clerici, Mario" sort="Clerici, Mario" uniqKey="Clerici M" first="Mario" last="Clerici">Mario Clerici</name>
<name sortKey="Forni, Diego" sort="Forni, Diego" uniqKey="Forni D" first="Diego" last="Forni">Diego Forni</name>
<name sortKey="Sironi, Manuela" sort="Sironi, Manuela" uniqKey="Sironi M" first="Manuela" last="Sironi">Manuela Sironi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/2020/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000797 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/2020/Analysis/biblio.hfd -nk 000797 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    2020
   |étape=   Analysis
   |type=    RBID
   |clé=     pubmed:32238584
   |texte=   Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/2020/Analysis/RBID.i   -Sk "pubmed:32238584" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/2020/Analysis/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021